Time Parallel Simulations II
ATM Multiplexers and G/G/1 Queues

Richard M. Fujimoto
Professor

Computational Science and Engineering Division
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0765, USA

http://www.cc.gatech.edu/~fujimotor
Outline

• Time Parallel Simulation using Regeneration Points
 – ATM Multiplexer Simulation

• Simulation Using Parallel Prefix
 – G/G/1 Queue Simulation

• Summary
Example: ATM Multiplexer

- Cell: fixed size data packet (53 bytes)
- N sources of traffic: Bursty, on/off sources
 - stream of cells arrive if on
 - 0 or 1 cell arrives on each input each time unit (cell time)
- Output link: Capacity C cells per time unit
- Fixed capacity FIFO queue: k cells
 - Queue overflow results in dropped cell
- Estimate loss probability as function of queue size
 - Low loss probability (10^{-9}) leads to long simulation runs!
Burst Level Simulation

Series of time segments: \(<A_i, \delta_i>\)
- Fixed number of ‘on’ sources during time segment
- \(A_i = \#\) on sources, \(\delta_i =\) duration in cell times
Example

• $Q_i =$ Number of cells in queue at start of ith tuple
• $L_i =$ Number of lost cells at start of ith tuple
• Objective: Compute Q_i and L_i for $i=1$, 2, 3, …
• $Q_1 = L_1 = 0$
Simulation Algorithm

- Generate tuples
- Compute Q_{i+1} and L_{i+1} for each tuple

Observation:

- if $A_i > C$, queue is filling (overload)
- if $A_i < C$, queue is emptying (underload)

- $Q_{i+1} =$ if $A_i > C$, then $\min [K, Q_i + (A_i - C) \delta_i]$ else $\max [0, Q_i - (C - A_i) \delta_i]$
- $L_{i+1} =$ if $A_i > C$, then $L_i + \max [0, (A_i - C) \delta_i - (K - Q_i)]$ else L_i

A_i cells arrive each time unit

Q_i δ_i Q_{i+1}

cells added to queue during tuple

Free space in queue at start of tuple
Parallel Simulation Algorithm

- Generate tuples: can be performed in parallel
- Q_{i+1} depends on Q_i; appears sequential
- Observation:
 - Some tuples guaranteed to produce overflow or empty queue, independent of all other tuples or Q_i at start of the tuple
 - Q_{i+1} known for such tuples, independent of Q_i
Guaranteed Underflow / Overflow

A tuple \(<A_i, \delta_i>\) is guaranteed to cause overflow if
\[(A_i - C) \delta_i \geq K\]

\[Q_{i+1} = K\] for guaranteed overflow tuples

A tuple \(<A_i, \delta_i>\) is guaranteed to cause underflow if
\[(C - A_i) \delta_i \geq K\]

\[Q_{i+1} = 0\] for guaranteed underflow tuples

The simulation timeline can be partitioned at guaranteed overflow/underflow tuples to create a time parallel execution

No fix-up computation required
Time Parallel Algorithm

Algorithm

- Generate tuples \(<A_i, \delta_i>\) in parallel
- Identify guaranteed overflow and underflow tuples to determine time division points
- Map tuples between time division points to different processors, simulate in parallel
Guaranteed Overflow/Underflow Points

• We need at least N-1 guaranteed overflow or underflow points to distribute the computation over N processors
• Ideally, would like many more than N points and a (roughly) uniform distribution of the points across the tuples in order to provide flexibility to balance the computation workload across the N processors
• In practice, there are usually many guaranteed underflow points
Outline

• Time Parallel Simulation using Regeneration Points
 – ATM Multiplexer Simulation

• Simulation Using Parallel Prefix
 – G/G/1 Queue Simulation

• Summary
Basic idea: formulate the simulation computation as a linear recurrence, and solve using a parallel prefix computation.

Parallel prefix: Give N values, compute the N initial products:
- $P_1 = X_1$
- $P_2 = X_1 \cdot X_2$

For $i = 1, \ldots, N$:
- $P_i = X_1 \cdot X_2 \cdot X_3 \cdot \ldots \cdot X_i$
 - \cdot is associative.

Parallel prefix requires $O(\log N)$ time.
Example: G/G/1 Queue

Example: G/G/1 queue (general interarrival time and service time distribution, one server), given

- $r_i = \text{interarrival time of the } i\text{th job}$
- $s_i = \text{service time of the } i\text{th job}$

Compute

- $A_i = \text{arrival time of the } i\text{th job}$
- $D_i = \text{departure time of the } i\text{th job}$, for $i=1, 2, 3, \ldots N$

Solution: rewrite equations as parallel prefix computations:

- $A_i = A_{i-1} + r_i \ (= r_1 + r_2 + r_3 + \ldots r_i)$
- $D_i = \max (D_{i-1}, A_i) + s_i = \max (D_{i-1}+s_i, A_i+s_i)$

Parallel prefix can be applied to both computations
Summary of Time Parallel Algorithms

Pro:
- allows for massive parallelism
- often, little or no synchronization is required after spawning the parallel computations
- substantial speedups obtained for certain problems: queueing networks, caches, ATM multiplexers

Con:
- only applicable to a very limited set of problems