Future Event List

Priority Queue Data Structures

Richard M. Fujimoto
Professor

Computational Science and Engineering Division
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332-0765, USA

http://www.cc.gatech.edu/~fujimoto/

Copyright © Richard M. Fujimoto
Priority Queue: Operations

• **Required Operations**
 - Insert (FEL, ev, ts); /* aka enqueue */
 • Add event ev with timestamp ts to event list FEL
 - Event = Delete (FEL); /* aka dequeue */
 • Remove smallest time stamp event and return a pointer to it
 - DeleteArbitrary (FEL, ev);
 • Unschedule an event
 • Delete an arbitrary event ev (not necessarily one with smallest timestamp)

• **Constraints for a general simulation engine**
 - Maximum number of events required at one time unknown
 • Memory allocation issues
 - Amount of computation per event might be small
 • event list computation time may dominate overall execution time
 - Sequence of Insert and Delete operations unknown
 - Distribution of timestamps on successive Insert operations unknown
Data Structures

• Linked lists
 – Single linked list
 – Double linked list

• Tree Based
 – Heap
 – Splay tree, ...

• Hybrid
 – Henricksen’s algorithm

• Hashing schemes
 – Calendar queue
 – Ladder queue
Performance Comparison

- Hold model: fixed number of elements; repeat (dequeue, enqueue) operations
- Comparison of different data structures using exponential timestamp increment (see paper for other distributions)
- Empirical measurement of time for (dequeue + enqueue) operation for different queue sizes

Conclusions [Jones]

<table>
<thead>
<tr>
<th>Priority-queue implementation</th>
<th>Code size*</th>
<th>Performance Average</th>
<th>Performance Worst</th>
<th>Relative speed*</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linked list</td>
<td>47</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>11</td>
<td>Best for $n < 10$</td>
</tr>
<tr>
<td>Implicit heap</td>
<td>72</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Leftist tree</td>
<td>79</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>9–10</td>
<td></td>
</tr>
<tr>
<td>Two list</td>
<td>104</td>
<td>$O(n^{0.5})$</td>
<td>$O(n)$</td>
<td>9–10</td>
<td>Good for $n < 200$</td>
</tr>
<tr>
<td>Henriksen’s</td>
<td>68</td>
<td>$O(n^{0.5})$</td>
<td>$O(n^{0.5})^c$</td>
<td>1–7</td>
<td>Stable</td>
</tr>
<tr>
<td>Binomial queue</td>
<td>188</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>1–7</td>
<td></td>
</tr>
<tr>
<td>Pagoda</td>
<td>110</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>4–8</td>
<td>Delete in $O(\log n)$</td>
</tr>
<tr>
<td>Skew heap, top down</td>
<td>56</td>
<td>$O(\log n)$</td>
<td>$O(\log n)^c$</td>
<td>5–7</td>
<td></td>
</tr>
<tr>
<td>Skew heap, bottom up</td>
<td>103</td>
<td>$O(\log n)$</td>
<td>$O(\log n)^c$</td>
<td>4–6</td>
<td>Delete in $O(\log n)$</td>
</tr>
<tr>
<td>Splay tree</td>
<td>119</td>
<td>$O(\log n)$</td>
<td>$O(\log n)^c$</td>
<td>1–3</td>
<td>Stable</td>
</tr>
<tr>
<td>Pairing heap</td>
<td>84</td>
<td>$O(\log n)$</td>
<td>$O(\log n)^c$</td>
<td>3–6</td>
<td>Promote in $O(1)$</td>
</tr>
</tbody>
</table>

* The total lines of Pascal code for initqueue, emptyqueue, enqueue, and dequeue.
* 1 is fastest; 11 is slowest. The rankings are based on Figures 12–14.
* An amortized bound; single operations may take $O(n)$ time!

- Linear list fastest $n<10$, but very bad if $n>50$
- Splay trees
 - Stable: items with same priority treated in FIFO order
 - Supports delete arbitrary operation
 - Reasonably good performance across different distributions
- Results tend to be architecture dependent (caches)
Splay Trees

• Binary search tree; for any node (timestamp t)
 – Left subtree nodes have timestamp < t
 – Right subtree nodes have timestamp ≥ t
 – Contrast with the “heap property”

• Operations
 – Delete: where is smallest item?
 – Insert: how does insertion work?
Binary Search Tree Operations

- **Delete**: remove leftmost item (leaf, or has one child)
- **Insert**: traverse tree downward, insert at proper location
- **Repeated insert/delete operations** unbalance tree
- **Performance** $O(n^{0.5})$ [Kingston, 1985]
Splay Trees (cont.)

• Repeated insert/delete operations (e.g., repeated deletes) leaves unbalanced tree
• Could carefully rebalance after each operation (AVL tree)
• Splay tree
 – Heuristic to blindly restructure tree using rotation operations
 – Does not guarantee tree will be rebalanced; worst case time per operation is $O(n)$, but...
 – *Amortized* complexity (average over many operations) $O(\log_2 n)$
Splaying Operation

- **Splay(x):** travel up tree from x to root, moving x to root
- **Insert(x):** insert x at leaf, splay(x)
- **Delete:** remove node, splay at parent of removed node
- **Apply splaying operations in traversal up tree**

 Visit x; p(x) = parent of x; three cases:

 (a) p(x) root

 (b) x and p(x) both left or both right children

 (c) x right child and p(x) left child or vice versa

Fig. 3. A splaying step. The node accessed is x. Each case has a symmetric variant (not shown). (a) Zig: terminating single rotation. (b) Zig-zig: two single rotations. (c) Zig-zag: double rotation.
Calendar Queues

• Analogous to desk calendar
 – Array of “buckets” denoting a time interval (e.g., 365 buckets, 1 day/bucket, spanning a year)
 – Each bucket covers a fixed interval of time (day)
 – Each bucket points to sorted linear list of events scheduled for that day
 – Events scheduled for next year simply placed in corresponding bucket (day)
 – Keep pointer to bucket with smallest timestamp event (today)
Calendar Queue Example

<table>
<thead>
<tr>
<th>Bucket</th>
<th>Value</th>
<th>Time Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.2</td>
<td>12.0–12.5</td>
</tr>
<tr>
<td>1</td>
<td>16.6</td>
<td>12.5–13</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>13–13.5</td>
</tr>
<tr>
<td>3</td>
<td>17.8</td>
<td>13.5–14</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>14–14.5</td>
</tr>
<tr>
<td>*→</td>
<td>5</td>
<td>14.5–15</td>
</tr>
<tr>
<td>6</td>
<td>15.2</td>
<td>15–15.5</td>
</tr>
<tr>
<td>7</td>
<td>15.9</td>
<td>15.5–16</td>
</tr>
</tbody>
</table>

The current year begins at 12.0 and ends at 16.0. Bucket 5 is the current date. Note that events scheduled in buckets 0 through 4 are scheduled for next year and are in the range 16–20. 0.5 is the length of a day. The numbers on the right are the time ranges for each day in the current year. Note that the event at 19.1 in bucket 6 is scheduled for next year.

FIGURE 1. Eight Day Calendar Queue
Calendar Queue Operations
(preliminary version)

• Insert
 – Map timestamp to appropriate bucket
 – Perform linear list insertion into list

• Delete
 – Starting from current (today) bucket
 • If first event in current year, remove it
 • Else, go to next bucket; if last bucket, advance to next year

• Potential problems
 – Long linear list
 – Need to scan many buckets on delete operation
Problems and Solutions

• Wrong number of buckets
 – If #events >> #buckets
 • Long linear list, long insert time
 – If #events << #buckets
 • Long delete time (scan many empty buckets)
 – Solution: resize number of buckets
 • If #events > 2 * # buckets, double # buckets
 • If #events < 0.5 * #buckets, halve # buckets
 • Resizing requires copying events; expensive

• Poor choice of length for a “day”
 – Ideally, about one event per day
 – If day too long, many events in “today” bucket (long insert time)
 – If day too short, many events in later years (long delete time)
 – Solution: Sample some events to estimate average time between events and set day length to that value; perform at each resize operation
• Bimodal distribution of events (many “near future” events and many “far future” events)
 – After removing “near future” events, must cycle through all buckets repeatedly to reach far future events
 – Solution: If scan through all buckets w/o success, search for smallest timestamp event by scanning all buckets
Performance Measurements

- Hold model, exponential distribution
Calendar Queues

• “Well behaved” (i.e., hold like) behavior results in excellent performance for test cases
 – Often significantly faster the $O(\log n)$ data structures
• In practice, extremely poor performance sometimes observed, due to excessive resizing operations or many items mapping to the same bucket (e.g., see [Rönngren, Ayani, 1997])
• More recent refinements (e.g., Ladder Queue) offer variations on original calendar queue idea
Calendar Queue Critique

- Calendar queue performs well when number of elements in the queue \(n \) and mean timestamp increment \(\mu \) constant [Ronngren and Ayani 1997]

- May yield \(O(n) \) performance if \(\mu \) varies, even if \(n \) remains constant
 - Many events in small number of buckets (long insertion time)
 - Many empty buckets (long deletion time)
 - Attributed to size-based trigger to resize queue

- Large changes in \(n \) can cause poor performance
 - May trigger resize operation when not necessary if size fluctuates by factor of two
 - Resize operation expensive
Calendar Queue Critique (cont.)

- Sampling heuristic for CQ parameters (number of buckets and bucket width) ineffective for skewed event distributions
 - CQ heuristic to set bucket width to average time between events fails for skewed distributions
 - High variance in inter-event time leads to inappropriate settings (e.g., small bucket size leading to many empty buckets that must be skipped on deletion operation)

- Sorting events on enqueue operation
 - Makes enqueue operation expensive for long sublists
 - Sorting effort wasted if resize operation is triggered
Ladder Queue Data Structure

• Top
 – Unsorted list of “far future” events
 – Maintain: MaxTS (largest timestamp), MinTS (smallest timestamp) and NTop (number of events) in list
 – TopStart: all events in Top have timestamp at least this large

• Middle
 – Multi-level form of calendar queue

• Bottom
 – Sorted list of “near future” events
 – Nbot: Number of events in list

Ladder Queue

- **Top**
 - Unsorted list of “far future” events

- **Ladder (middle)**
 - Several “rungs” of buckets (rung like a CQ)
 - Each bucket holds unsorted events
 - If a rung has a bucket with too many events (event timestamps not uniformly distributed over bucket), “spawn” new rung

- **Bottom**
 - Sorted list of “near future” events
 - Dequeue events here

Fig. 1. Basic structure of Ladder Queue.
Ladder (middle tier)

Spawning

• If a bucket has “too many” events, form a new calendar queue (rung) containing events within that bucket

• Repeat the above step for the new calendar queue (rung)

• Process of creating a new rung called “spawning”

Fig. 1. Basic structure of Ladder Queue.
Ladder: Main Ideas

• Each rung of ladder has a different bucket size, accommodating different timestamp distributions

• Delay sorting events until small timestamped events about to be dequeued
 – Insertion to Ladder and Top simply append to list; only Bottom list is sorted
 – Avoids sorting list, then discarding work due to resize operation

• Resize operation from an insertion only occurs in Bottom
 – Size of Bottom limited to threshold, limiting cost of resize, independent of number of events in the queue

• Theoretical complexity is O(1), amortized over multiple operations
LQ Operation: Epoch

- Initially, all events reside in the Top
- Epoch starts with first Dequeue operation
- Move events from top to form a single rung of ladder (middle section)
- If first non-empty list of events in ladder has fewer events than threshold
 - Then: sort them and move to Bottom
 - Else: spawn; move list of events into a new rung (form a new CQ with its own bucket size parameters based on events in the new CQ), and repeat this step
- Dequeue first event from Bottom
- Subsequent enqueue/dequeue operations eventually result in all events in Top
LQ: Spawn Example

- Initially, all events in Top
- Dequeue:
 - Move Top events to ladder
 - Move first two events in ladder to Bottom
 - Return first event from Bottom (ts=0.5)
- Dequeue:
 - Return event from Bottom (ts=0.6)
- Dequeue:
 - List too long (length exceeds threshold)
 - Triggers spawn operation
 - Move first two events to Bottom
 - Return first event (ts=3.0)

Fig. 2. An example illustrating the dequeue algorithm.
Enqueue Operation

- Determine which part (Bottom, ladder, Top) will receive event based on the event timestamp
 - Top: Unsorted insertion
 - Ladder: Find rung, then insert (like CalQ insert)
 - Bottom: Sorted insertion; if Bottom contains too many events (= threshold)
 - Spawn a new rung in Ladder
 - Populate new rung with events from Bottom
 - First list in new rung becomes the new Bottom
Summary

- Priority queue performance can be important for some very large simulations (hundreds of thousands to millions of events in FEL)
- Variety of implementations exist
 - Linear list generally fastest for small event lists
 - $O(\log n)$ data structures (e.g., heap, splay tree) give predictable performance, though often not the fastest available approach
 - Calendar Queue data structures offer best performance (constant time insert/delete) for many applications, but can yield surprisingly poor performance in some cases
 - Ladder Queue addresses unstable property of calendar queue